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We study the frequency selection problem for spiral waves in nematic liquid crystals in an imposed rotating
magnetic field. We find that the frequency is selected due to local curvature of the spiral. The results are in
excellent agreement with numerical simulations and consistent with experimental data. Possible generalizations
to the case of multiarm spirals and anisotropic elastic constants are considered.

PACS number(s): 61.30.Gd, 47.20.Ky

Application of a magnetic field to a nematic liquid crystal
leads to the formation of domain walls separating molecules
with different orientation [1,2]. These walls, called
Brochard-Leger (BL) walls [3], are similar to Bloch and Néel
walls for ferromagnets [4]. Rotation of the magnetic field H
results in a transition to moving walls and spontaneous for-
mation of rotating spiral waves [5—8]. The core of the spiral
wave is an umbilic with the topological charge * 1.

A Ginzburg-Landau type equation was derived to describe
small distortions of the director field [6,7] in the vicinity of
the Frederiks transition [9]. This equation for the single com-
plex order parameter A is of the form
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where 7y, is the rotational viscosity, u is the supercriticality
parameter, w is the frequency of rotation of the magnetic
field, K, are the elastic constants, A=(id,+d,)?, y~H?,
and a is positive constant ( for details see [6,10]). In Ref. [5]
the frequency of the spiral rotation and the wave number
were measured. Reference [6] reports on the region of exist-
ence for spiral waves in the parameter space of Eq. (1). How-
ever, such important problems as frequency selection and the
character of the interaction with other spirals and boundary
remains unclear. In this Rapid Communication we prove that
the frequency selection is given purely by the curvature ef-
fects of the BL walls far away from the spiral’s core. Our
result is in excellent agreement with the numerical simula-
tions. The connection with the experimental results of [5] is
discussed at the end of the Rapid Communication.

After the scaling t—(u/y)t, w—wy/n, v—y/ u,
x—Ju/[2(K,+K,)]x, A—+JaA, Eq. (1) can be written in

the dimensionless form

dA=(1+iw)A+yA*+AA—|A|?A+ SKexp(i2wt)AA*,
2

where 6K=(K;—K,)/(K,+K,)<1 is the normalized an-
isotropy parameter. We start from the isotropic case
(8K=0); effects of the anisotropy will be discussed later.
We consider a spiral solution in an infinite domain. The
spiral frequency selection problem can be obtained from the
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analysis of the outer solution (far away from the core of the
spiral). However, one needs to consider the core of the spiral
in order to fix the angular separation between the spiral’s
arms (interfaces).

In the region of existence of a spiral solution (the param-
eters 0<w<y<y1/9+w?) Eq. (2) possesses two stable
equilibria obeying the condition sin2¢; ,= w/7y [6,11]

1 . @ 1 L@
¢, = zarcsin 5 ¢, = 1+ 3arcsin 7 3)

I,=(1+ 72_0)2)1/2, 4)

where I=|A| and ¢=arg A. Moreover, there exists a one
dimensional (1D) front (or kink) solution connecting these
equilibria, often called a Bloch wall (BW) or a Brochard-
Leger wall [11-13]. The velocity ¢ of the BW in the limit
w<<y is given by the expression

_ Tw ((1—3'y)(1+'y))1/2
T 1-v/3 8y )

C

©)

For y=w the velocity diverges. For intermediate values of
w,y the velocity c(w,y) can only be obtained numerically.

We assume that the far field of the spiral is represented by
two slightly curved BWs. By virtue of the fact that each BW
introduces a phase jump 7, the 27 periodicity of the phase
d(p,0+2m)=¢(p,0)+27 in polar angle 6 requires two
BWs for each polar radius p. For rigidly rotating spiral an-
gular separation « is a constant and does not depend on p.
However, the angle a between these BWs remains a free
parameter and cannot be obtained from the solution of an
outer problem. Indeed, if the BWs are far away from each
other, mutual interaction is negligibly small and the angular
separation of the BW is not fixed. They come close to each
other only in the core region. Therefore, matching with the
inner (core) solution fixes the angular separation.

Due to the local curvature y of a BW the normal velocity
c, is modified. To obtain the relation between x,c,c, we
consider a locally orthogonal curvilinear coordinate system
on the interface (BW). The coordinates are the normal A and
the tangential s. Using the fact that in the first order the
Laplacian operator is A= 6@\ + xd\+ - - - we obtain the well-
known Gibbs-Thomson condition [14,15]

c,=c—x. (6)
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The condition (6) is fulfilled if the curvature y remains
small. This can be assured if ¢<<1, which is the case for
w<<vy or near the Ising-Bloch transition given by
1-3Vy*— w?<1.

A rigidly rotating spiral solution is obtained by substitut-
ing the expressions for the normal velocity ¢, and the cur-
vature y

__(_ZL_ (7)
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into Eq. (6). Here y(p)=p[d0;(p)/dp], 6, is the interfacial
angle, and () is the rotation frequency that has to be deter-
mined. One has the following equation for ¢:

dy y
;5=@w—ﬂu+Wrwu+WW% ©)

Equation (9) has to be completed by the boundary condi-
tions at p—0 and p— . The first condition is that the in-
terface is smooth at the core (planar BW), i.e., 4(0)=0. The
second condition requires the far field to be an Archimedean
spiral, i.e., ¢y~ p for p—oo.

According to Refs. [14,15], the solution of the problem
(9) obeying the boundary conditions exists only if the fre-
quency () obeys the relation

c
——==By=~1.738. (10)

N

Using the expression (5) we obtain immediately the fre-
quency selection formula

mw*(1-3y)(1+7) w*(1-3y)(1+7y)
> 2 ~0.408 5
8B5y(1—7v/3) y(1—-v/3)

(11)

The formula is considerably simplified in the phase approxi-
mation valid for |y|<1. For this case the phase ¢ becomes
an independent variable and is described by a single phase
diffusion equation

0, p=w—y sin2p+Ad. (12)

The frequency in the phase approximation is given by the
expression

22 w2
882y 0.408 " (13)
The solution of the outer problem provides the frequency

selection. However, it is not clear that the outer solution can

be matched with the core. Moreover, the angular separation
between the BWs remains a free parameter in the outer prob-
lem.

Let us return to the core problem. It is important to define
the angular separation between the BWs. For w<<1 the core
region is roughly defined by the condition wp<€1, p>1. We
can construct the core solution by expanding in w:

IGOR ARANSON 51

0.008

0.006 |

C 0.004 |

0.002

0.000 . p
0.00 0.02 0.04 0.06 0.08

FIG. 1. The selected frequency () as a function of w for
v=0.2 (solid line) and y=0.1 (dashed line) given by Eq. (11).
Diamonds and bullets are the result of numerical simulations with
Eq. (2) for 6K=0. For comparison, the frequency for y=0.1 in
phase approximation is given by a dot-dashed line [Eq. (13)].

In zeroth order we obtain the static solution [because
9,=Qd5~0(w?)]

— 5 sin2 oA o+ 2V o Vo /1o =0,
10_13+‘}’C052¢010+A10—(V¢0)210=0. (15)

These equations possess a stable solution containing the to-
pological defect at p—0: ¢q= 6, I~ p. On the other hand,
the far asymptotics of core solution (p— ) of Egs. (15) are
represented by two static planar BWs separated by the angle
7r. One can see this from the symmetry arguments. On the
other hand, in the outer solution the curvature vanishes to-
wards the core.

Therefore, matching with the outer solution is possible
only if we fix the angular separation between the BWs in the
far field to equal exactly 7. A spiral with the angle 7 is
called a symmetric spiral [16]. For the symmetric spiral the
core is purely flat and the far field solution does not have a
cusp singularity at the core (this cusp singularity is typical
for any angular separation not equaling 7 and is smoothed
out by diffusion). Clearly, the core possesses a nontrivial
topological structure (it includes the topological defect in the
spiral’s center). However, the frequency selection problem in
the first order is not affected by the core.

We performed a numerical solution of Eq. (2). We applied
an efficient implicit quasispectral split-step method with no-
flux boundary conditions. We used typically 256X 256 Fou-
rier harmonics. The time step chosen was 0.1 and the size of
the integration domain 200X 200. We fixed y=0.1,0.2 and
varied w in the interval 0.01—0.075, which falls into the
range of applicability of our theory.

The results of simulations appear to be in convincing
agreement with theory (see Fig. 1). Some small discrepancy
arises due to numerical problems for w—0. In that limit the
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frequency is very small and the problem becomes a very
CPU-intensive project. On the other hand, for larger w the
discrepancy is due to violation of the Gibbs-Thomson con-
dition.

The results presented can be generalized to the case of
multiarm spirals described by the equation [8,13]

FA=(1+iw)A+y(A*)"+AA—|A|%A, (16)

where n is an integer number. A simple answer can be ob-
tained in the phase approximation. The corresponding phase
diffusion equation is of the form

0, p=w—ysin(n+1)dp+Ad. 17)

The multiarm solution can be constructed similarly to a two-
arm one. The equation sin(n+1)¢=w/y now possesses n+ 1
stable equilibria. Therefore the spiral will contain n+1 in-
terfaces (BW) separated by the angle 27/(n+1). The
frequency can be obtained using simple scaling arguments.
Replacing ¢=(n+1)¢, =t(n+1)y, o=w/y, x
=4(n+1)yx we obtain the equation containing only the
parameter @:

9,p=a—sing+A . (18)
The spiral’s frequency Q in that scaling is given by

&>

Q=——1>.
168}

(19)

Coming back to the original variables we obtain the fre-
quency of multiarm spirals:

Q= mw?(n+1) 20
~ 16BZy (20)

Let us consider an anisotropy of the elastic coefficients:
K,#K,, which is typical for liquid crystals. The anisot-
ropy results in two effects: oscillations of the BW at the
frequency 2w and a small mismatch of the mean velocity of
the BW. In addition, the core of the spiral meanders at the
frequency 2w. Of course, this meandering is completely dif-
ferent from the meandering of spiral waves in isotropic ex-
citable media [14,15] resulting from the intrinsic instability
of the core. The correction to the mean velocity is propor-
tional in the first approximation to (K;—K5)? and does not
depend on the sign of w. Hence, clockwise and counter-
clockwise rotating spirals would have different frequencies,
as was observed in numerical simulations [6] and in experi-
ment [2,6]. The experimentally measured anisotropy correc-
tion appears to be relatively small even for moderate values
of the parameter K.

The systematic evaluation of the anisotropy correction to
the selected frequency is a very tedious problem even in the
phase approximation. Here we deduce only the scaling rela-
tion between the anisotropy and the frequency up to some
constant obtained numerically later on.

The phase equation for the anisotropic case is of the form

9,p=w— ysin2 p+ A+ SKIm(exp[ 2i wt — i Pp]
X Aexp[ —i]). (21)
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We focus on the case K<<1. We can look then for pertur-
bations of the velocity of the BW. In the first order of dK the
velocity undergoes harmonic oscillations at the frequency
2w and no mismatch of the mean value. Going to the second
order we obtain the correction ~(w8K)2. The prefactor w?
reflects the fact that the anisotropy correction also vanishes
with w. Using scaling arguments we deduce the following
expression for the selected frequency:

7 w? w3(8K)?

Q= + ,
8BGy Y

(22)

where the constant 8~0.4 has been obtained from simula-
tions. The + sign obtains for clockwise and — for counter-
clockwise rotating spirals. Indeed, the anisotropy correction
~Bw?(5K/y)? is small (numerically) for ®—0 in agree-
ment with experimental data.

We have obtained the unexpected result that the frequency
of the spiral is completely defined by the far field and is only
slightly affected by the core, similar to the case for spirals in
excitable media [14,15]. For spirals in the complex
Ginzburg-Landau equation, which is the limit of Eq. (1) for
y—0 and a complex, the frequency is defined by the core
(see, e.g., [17]). Therefore we expect a crossover behavior
for small y and nonzero imaginary part of a. Moreover, by
analogy with spirals in excitable media, we expect the veloc-
ity of the spiral due to interaction with a boundargf or other
spirals to fall off superexponentially (~exp[—Q>°X%]+- )
over distances 1<X?<<yY?/Q*? and exponentially weak
(~exp[—V2yX]) for X2 y2/Q32 (see, for details, [18]).
In oscillatory media the spirals interact weakly exponentially
[19].

Measurements of the spiral’s frequency as a function of
o were performed in Ref. [5]. The measurements were per-
formed far from the Frederiks point, with no electric field.
Equation (1) is not formally valid for that case, but may
serve as an approximate phenomenological model. A more
accurate description requires a more complicated structure of
the nonlinear term in Eq. (1) [10]. In Ref. [5] the authors
attempted to describe the spiral pattern by a torque equation,
coinciding eventually with a phase equation (12). Using the
formula (13) we obtained a value of the selected frequency
about 2-3 times larger than that experimentally measured.
We conclude that the phase approximation is not precise
enough, and amplitude corrections should be included. The
results can be considerably improved using Eq. (1). The pa-
rameters of the equation can be fitted from the experimental
data presented in [5]. In particular, one has the value of
y=1 and y;=1/7=1.2048, where 7=0.83 s~ ! is a char-
acteristic relaxation time for the director. From the value
®4~0.87 one can obtain u (according to [5] w, is the fre-
quency of a dynamic-static transition or an Ising-Bloch tran-
sition). For Eq. (1) one has the Ising-Bloch transition for
u=3+1— w?r?~2.075. Moreover, in the experimental data
w7T~1, and the formula (11) cannot be used as obtained in
the limit w<€1/7. However, the more general expression (10)
is fulfilled fairly well as long as the front velocity c¢ is small.

We compared the experimental data with the selected fre-
quency given by (10) for y;=1/7, u=2.075, y=1. For sim-
plicity we put SK=0 (no anisotropy). The front velocity ¢
was obtained from a numerical solution of 1D Eq. (1) for
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FIG. 2. The selected frequency for w=2.07, y=1,

y;=1.2048, and 8K=0 (solid line) according to Eq. (10). The
experimental data [5] are given by open circles (spiral rotating with
field) and filled circles (counterfield).

6K =0. The results are presented in Fig. 2, where one sees
reasonable agreement. Deviations from experimentally mea-
sured frequencies are caused by anisotropy and violation of
the Gibbs-Thomson condition for w7— 1. One can also con-
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clude that the precise structure of the nonlinear term in Eq.
(1) does not affect the frequency. Indeed, in our theory the
constant a is scaled away from the beginning, although the
structure of the BW is a dependent. For this reason we ob-
tain a reasonable description of the selected frequency using
Eq. (1). Presumably, the more complicated nonlinearity [10]
can be replaced by the effective nonlinearity a, ff|A|2A. In-
sofar as a.;r does not affect the selected frequency, we
would have reasonable agreement with the experimental
data. Certainly, further improvement of the results can be
achieved taking into account anisotropy corrections.

A challenging problem is to evaluate the selected fre-
quency for a liquid crystal in a tilted magnetic field. For that
case the system manifests a transition to spatiotemporal
chaos above a critical value of the field [20]. The spiral wave
for that case is no longer symmetric and the core selects
nontrivial angular separation depending on the field magni-
tude. The envelope equation (1) acquires for this case an
additional A -independent term. We expect that our analysis
is still valid for this situation. We also expect our result to be
relevant for ferromagnets. The model describing the BW in
ferromagnets appears to be similar to Eq. (2) (see, e.g., [12]).

This work was supported in part by the Raschi Founda-
tion. Numerous discussions with P. Coullet, T. Frisch, L. Gil,
and D. Kessler are acknowledged.

[1] W. Heflrich, Phys. Rev. Lett. 21, 1518 (1968).
[2] K. B. Migler and R. B. Meyer, Phys. Rev. Lett. 66, 1485,
(1991); Phys. Rev. E 48, 218 (1993).
[3] F. Brochard, L. Leger, and R. B. Meyer, J. Phys. (Paris) 36, 1
(1975).
[4] L. N. Bulaevskii and V. L. Ginzburg, Zh. Eksp. Teor. Fiz. 45,
772 (1963) [Sov. Phys. JETP 18, 530 (1964)].
[5] K. B. Migler and R. B. Meyer, Physica D 71, 412, (1994).
[6] T. Frisch, S. Rica, P. Coullet, and J. M. Gilli, Phys. Rev. Lett.
72, 1471 (1994).
[7]J. M. Gilli, M. Morabito, and T. Frisch, J. Phys. (France) II 4,
319, (1994).
[8] J. M. Gilli and L. Gil, Lig. Cryst. 17, 1 (1994).
[9]1 P. G. de Gennes, The Physics of Liquid Crystals (Clarendon
Press, Oxford, 1974).
[10] T. Frisch, Physica D (to be published).
[11] P. Coullet, J. Lega, B. Houchmanzadeh, and J. Lajzerowicz,

Phys. Rev. Lett. 65, 1352 (1990).

[12] P. Coullet, J. Lega, and Y. Pomeau, Europhys. Lett. 15, 221
(1991).

[13] P. Coullet and K. Emilson, Physica D 61, 119, (1992).

[14] J. J. Tyson and J. P. Keener, Physica D 32, 327 (1988).

[15] D. A. Kessler, H. Levine, and W. N. Reynolds, Phys. Rev. A
46, 5264 (1992); Physica D 70, 115 (1994).

[16] J. P. Keener, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 52,
1370 (1992).

[17] P. Hagan, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 42, 762
(1982).

[18] I. Aranson, D. Kessler, and I. Mitkov, Phys. Rev. E 50, R2395
(1994); Physica D (to be published).

[19] 1. Aranson, L. Kramer, and A. Weber, Phys. Rev. E 47, 3231
(1993); Phys. Rev. Lett. 72, 2316 (1994).

[20] T. Frisch and J. M. Gilli, J. Phys. (France) II (to be published).



